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Water wave propagation and scattering over topographical bottoms

Zhen Ye*
Department of Physics, National Central University, Chungli, Taiwan 32054

~Received 6 October 2002; published 28 March 2003!

Here we provide a derivation of the formula recently used for investigating Bragg resonance in waves on a
shallow fluid over a periodically drilled bottom@M. Torres et al., Phys. Rev. E63, 011204~2000!#. The
equation is also compared with other existing theories. As an application, the theory is extended to the case of
water waves propagating over a column with an arbitrary array of cylindrical steps. For a regular array, the
formulation for computing band structures is also presented.
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I. INTRODUCTION

Propagation of water waves in water with topographi
bottoms has been and continues to be a subject of m
research. From the practical side, it is essential for m
important ocean engineering problems such as designing
derwater structures to reduce the impact of water waves
banks or floating subjects. From the research aspect, it
also hold an important value. Since water waves are a m
roscopic phenomenon, they could be monitored and reco
in a laboratory scale. In this way, many significant pheno
ena of microscopic scales may be demonstrated with w
waves. This would be particularly useful in facilitating an
understanding abstract concepts pertinent to waves.

Indeed, recent experiment@1# used water waves to illus
trate the phenomenon of Bloch wave, which has been pr
ously studied in solid states. This experiment made it p
sible that the abstract concept be presented in
unprecedentedly clear manner. The experimental results
also been matched by a theoretical analysis in Ref.@2#. How-
ever, we found that the theory presented in Ref.@2# was not
derived. Rather, it was simply given by drawing an analo
with the case of acoustic scattering through structures. Th
is an obvious need for a rigorous derivation of the theo
This is one of the purposes of the present paper, ther
providing a support of the formulas used in Ref.@2#.

There have been many approaches for investiga
propagation of water waves over various bottom topog
phies. A great amount of papers and monographs has
published~e.g., Refs.@3–14#!. A comprehensive reference o
the topic can be found in two excellent textbooks@15,16#. In
this paper, we would like to derive from first principles
simple but coherent formulation for the problem. It will b
shown that this formula is exactly the same as that use
Ref. @2# to explain the experimental findings in Ref.@1#. It
will also be shown that this approximate approach compa
favorably with existing approximations when applied to t
cases considered previously. The advantage of the pre
approach is obvious: it is simple, accommodating, syste
atic, and can be easily numerically programmed. In parti
lar, we explicitly show that it, respectively, recovers thr
previous results for shallow water, deep water, and scatte
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by rigid cylinders standing in water. We will first give
theory for general bottom topographies. Then we will exte
this to study the case of water wave propagation and sca
ing in a column with many cylindrical steps.

II. GENERAL THEORY

Consider a water column with an arbitrary bottom topo
raphy. We set up the coordinates as follows. Let thez axis be
vertical and directed upward. Thex-y plane rests at the wate
surface when it is calm. The depth of the bottom, whi
describes the bottom topography, is denoted byh(x,y), and
the vertical displacement of the water surface ish(x,y,t).
Now we derive the governing equations for the water wa
over the bottom topography described byh(x,y).

Consider a vertical column with a base differential e
ment dxdy at (x,y). The change rate of the volume of th
column is

]

]t
h~x,y,t !dxdy.

By conservation of mass, this would be equal to the
volume flux from all the horizontal directions, i.e.,

]

]t
h~x,y,t !dxdy52¹'•F E

2h

h
dzvW'~x,y,z,t !Gdxdy,

where¹'5(]x ,]y), and ‘‘' ’’ denotes the horizontal direc
tions. This gives us the first equation

]

]t
h~x,y,t !52¹'•F E

2h

h
dzvW'~x,y,z,t !G . ~1!

The second equation is obtained from Newton’s second
From the Euler equation for incompressible ideal flows,

] tvW 1~vW •“ !vW 52
1

r
“p2rgẑ,

which is valid atz50, with g being the gravity acceleration
and

p5rg~h2z!, ~2!

we obtain
©2003 The American Physical Society23-1
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]

]t
vW'~x,y,0,t !1@~vW •“ !vW #',z5052g¹'h. ~3!

Note that when the liquid surface tension is included,
following term should be added to Eq.~2!,

s¹'
2 h, ~4!

in which s is the surface tension coefficient. In this pap
for simplicity we ignore this effect.

Another equation is from the boundary condition atz
5h, which states

vW •n̂uz52h(x,y)50, ~5!

where n̂ is a normal to the bottom. For an incompressib
fluid, we also have the following Laplace equation:

“•vW ~x,y,z,t !50, ~6!

in the water column. Equations~1!, ~3!, ~5!, and~6! are the
four fundamental equations for water waves.

A. Linearization

For small amplitude waves, i.e.,h!h, we can ignore the
nonlinear terms in Eqs.~1! and~3!. Such a linearization lead
to the following two equations:

]

]t
h~x,y,t !52¹'•F E

2h(x,y)

0

dzvW'~x,y,z,t !G ~7!

and

]

]t
vW'~x,y,0,t !1g¹'h~x,y,t !50. ~8!

These two equations together with Eqs.~5! and~6! determine
the scattering of water waves with a bottom topography.

B. Propagation approximation

Here we provide an approximate solution to Eqs.~7!, ~8!,
~5!, and~6!. The procedure is as follows. When the variati
of the bottom topography is smaller than the wavelength~to
be determined self-consistently!, we can first ignore terms
involving ¹'h, and solve for the velocity field. For the in
compressible fluid, the velocity field can be represented b
scalar field, i.e.,

vW ~x,y,z,t !5“F~x,y,z,t !.

We write all dynamical variables with a time dependen
e2 ivt ~this time fact is dropped afterwards for convenienc!.
This procedure leads to the following equations forF:

¹2F~x,y,z!50 ~9!

with
03662
e
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v2F~rW,0!1g
]

]z
F~rW,0!50 @rW5~x,y!#. ~10!

The first approximation is made at the bottom (z52h). The
boundary condition at the bottom reads

]

]n
F~rW,2h!5

]

]z
F~rW,2h!1¹'•¹'F~rW,2h!50. ~11!

We approximate thatn̂ is in thez direction by neglecting the
second term in the above equation. This is valid as long
¹'h!kh. Thus the boundary condition gives

]

]z
F~rW,2h!50. ~12!

Note that this condition is exact in the case of step-w
topographical bottoms, to be discussed later. Equations~9!,
~10!, and~12! lead to the solution forF,

F~x,y,z!5f~x,y!cosh@k~z1h!#

1(
n

fn~x,y!cos@kn~z1h!#, ~13!

wherek satisfies

v25gk~x,y!tanh@k~x,y!h~x,y!#, ~14!

andkn satisfies

v25gkn~x,y!tan@kn~x,y!h~x,y!#. ~15!

Heref andfn are determined by

~¹'
2 1k2!f50 ~16!

and

~¹'
2 2kn

2!fn50. ~17!

Equation~17! leads to evanescent wave solutions.
The second approximation is to ignore the summat

terms in Eq.~13!. Such an approximation is based upon t
following consideration. The summation terms represent
correction of evanescent waves caused by irregularities s
as sudden changes of depth. As these waves are spa
confined, it is reasonable to expect that such a correction
not affect the overall wave propagation, and the general
tures of the wave propagation. Indeed, when we apply
later approximate solution to the extreme case of propaga
of water waves over an infinite step, we find that our resu
agree reasonably well with that from two other approxim
approaches@6,14#. For example, the difference in the refle
tion results is uniformly less than a few percent for a wi
range of frequencies. The largest discrepancy can happe
the transmission results, but the difference is still less th
15% ~Fig. 1!. Furthermore, we find that the derived result
in agreement with that of Kirby for the case of waves ove
flat bed with small ripples@18#, i.e., whenkd!1 with d
being the magnitude of the ripples. As a matter of fact, in t
3-2
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case, it can be shown that after a mathematical manipula
@17#, Eq. ~2.11! in Ref. @18# becomes essentially the same
the following Eq.~21!.

Under the above approximations, we have

F~x,y,z!'f~x,y!cosh@k~z1h!# ~18!

and

v'~x,y,z!'cosh@k~z1h!#¹'f. ~19!

Now taking Eqs.~18! and ~19! into Eqs.~7! and ~8!, we get

¹'S tanh~kh!

k
¹'h D1

v2

g
h50. ~20!

For convenience, hereafter we write¹' as“ when it acts on
the surface wave fieldh. That is,

¹S tanh~kh!

k
¹h D1

v2

g
h50 ~21!

or

¹S 1

k2
¹h D 1h50, ~22!

wherek satisfies

v25gk~rW !tanh@k~rW !h~rW !#. ~23!

From this equation, we can have the conditions linking d
mains with different depths as follows: bothh and
tanh(kh)/kh5v2/gk2h are continuous across the boundary.

FIG. 1. The nondimensional transmission and reflection coe
cients versusb5kh for an infinite step, obtained from Eq.~22!.
While the result for the reflection agrees very well with that in Re
@6,14#, there is some discrepancy in the transmission results wi
the range ofkh between 0.4 to 1.2; the largest discrepancy of ab
15% occurs aroundkh50.8 for the transmission. The legends a
adopted from Ref.@6#.
03662
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Equation~22! is the same as that used in Ref.@2#, and is
similar to what is known as the mild-slope approximati
@15#:

1

c
“S c

k2
“h D 1h50, ~24!

wherec is given by

c5
1

2 S 11
2kh

sinh~2kh! D . ~25!

Equation~24! was derived by a number of authors under t
situation that“h!kh. In fact, under this condition it can b
shown that Eq.~22! is consistent with Eq.~24!.

Note that when the surface tension is added, Eq.~21!
becomes

“•F tanh~kh!

k
“S h2

s

gr
¹2h D G1

v2

g
h50, ~26!

with Eq. ~23! becoming

v25S gk1
s

r
k3D tanh~kh!. ~27!

This is the final equation to account for water wave prop
gation over topographical bottom.

C. The situation of shallow water or low frequencies

In the case of shallow water, i.e.,kh!1, we obtain from
Eq. ~21!,

“•~h“h!1
v2

g
h50. ~28!

This is the fundamental equation governing the small am
tude waves in shallow water, first derived by Lamb@3#.

D. The situation of deep water or high frequencies

For the deep water case,hk@1, we have

k5
v2

g
~29!

and

¹2h1
v4

g2
h50. ~30!

In the deep water, the dispersion relation is not affected
the bottom topography.

E. Scattering by infinite rigid cylinders

Equations~21! or ~22! are also applicable to another cla
of situation which has been widely studied in the literatu
That is, the scattering of water waves by infinite rigid cyli
ders situated in a uniform water column. When applying E

-

.
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~21! or ~22! to this case, we find that these two equations
actually exact. In the medium, the wave equation is

~“1k2!h50 ~31!

with the boundary condition at thei th cylinder,

n̂i•“hu i50, ~32!

obtained as we set the depths of the cylinders equal zeron̂i
is a normal to the interface. In fact, in this case, the probl
becomes equivalent to that of acoustic scattering by r
cylinders, and all the previous acoustic results will follo
@19–22#, such as the interesting phenomenon of deaf ba

III. WATER WAVES IN A WATER COLUMN
WITH CYLINDRICAL STEPS

The problem we are now going to consider is illustrat
by Fig. 2. We consider a water column with a uniform dep
h. There areN cylindrical steps~or holes whenhi.h) lo-
cated in the water. The depths of the steps are measured
the water surface and are denoted byhi and the radii areai .
In the realm of the linear wave theory, we study the wa
wave propagation and scattering by these steps.

A. Band structure calculation

When all the steps are with the sameh15h25•••5hN
and the radiusa, and are located periodically on the bottom
then we can use Bloch’s theorem to study the water w
propagation. Assume the steps are arranged either in
square or hexagonal lattices, with lattice constantd. Here we
use the standard plane-wave approach@23,24#. By Bloch’s
theorem, we can express the fieldh in the following form:

h~x,y!5eiKW •rW(
GW

C~GW ,KW !eiGW •rW, ~33!

whererW5(x,y), GW is the vector in the reciprocal lattice, an
KW is the Bloch vector.

In the present setup, the bottom topograph is periodic
we have the following expansion:

FIG. 2. Conceptual layout~side view of the three-dimensiona
coordinates!: There areN cylindrical steps located in a water co
umn with depthh. The depths of the steps are denoted byhi( i
51,2, . . . ,N) measured from the upper surface of the water c
umn, and the radii of the steps are denoted byai . The coordinates

are set up as shown. The steps are located atrW i . The y axis lies
perpendicularly to the page.
03662
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tanh~kh!

k
5(

GW
A~GW !eiGW •rW ~34!

with

A~GW !5S tanh~k1h1!

k1
2

tanh~kh!

k D f s1
tanh~kh!

k
, ~35!

for

GW 50;

and

A~GW !5S tanh~k1h1!

k1
2

tanh~kh!

k DFs~GW ! ~36!

for

GW Þ0.

Herek1 andk are determined by

v25gk1tanh~k1h1!5gktanh~kh!, ~37!

and f s is the filling factor given by@24#

f s55 pS a

dD 2

, square lattice

2p

A3
S a

dD 2

, hexagonal lattice,

andFs is the structure factor

Fs~GW !52 f s

J1~ uGW ua!

uGW ua
.

Substituting Eqs.~33! and ~34! into Eq. ~21!, we get

(
GW 8

QGW ,GW 8~KW ,v!C~GW 8,KW !50 ~38!

with

QGW ,GW 8~KW ,v!5@~GW 1KW !•~GW 81KW !#A~GW 2GW 8!2
v2

g
dGW ,GW 8 .

Finally, the dispersion relation connectingKW andv is deter-
mined by the secular equation

det@~GW 1KW !•~GW 81KW !#A~GW 2GW 8!2
v2

g
dGW ,GW 8] GW ,GW 850.

~39!

For the shallow water, we have tanh(kh)'kh, and thus
tanh(kh)/k'h, then by

h~x,y!5(
GW

A~GW !eiGW •rW, ~40!

-

3-4
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with

A~GW !5H ~h12h! f s1h for GW 50,

~h12h!Fs~GW ! for GW Þ0.
~41!

B. Multiple scattering theory

The water wave propagation in the water column w
cylindrical steps can also be investigated by the multi
scattering theory. Without requiring that all the steps are
same, we can develop a general formulism, following
steps of Twersky@25#.

In the water column, the wave equation reads

~¹21k2!h50, ~42!

with k being given by

v25gktanh~kh!.

Within the range of thei th step, the wave equation is

~¹21ki
2!h i50 ~43!

with

v25gk tanh~kh!.

At the boundary of the step, the boundary conditions are

tanh~kihi !

ki
n̂•“h iU

]V
i
2

5
tanh~kh!

k
n̂•“hU

]V
i
1

, ~44!

derived from the conservation of mass, and

h i u]V
i
25hu]V

i
1. ~45!

Here]V i denotes the boundary,1 and 2 denote the outer
and inner sides of the step, respectively, andn̂ is the outward
normal at the boundary.

Equations~42! and ~43! with the boundary conditions in
Eqs. ~44! and ~45! completely determine the shallow wat
wave scattering by an ensemble of cylindrical steps loca
vertically in the uniform water column. By inspecting, w
see that this set of equations is essentially the same a
two-dimensional acoustic scattering by an array of para
cylinders@21,25#. We follow Ref.@21# to study the scattering
of shallow water waves in the present system.

Consider a line source located atrWs . Without the cylinder
steps, the wave is governed by

~¹21k2!G~rW2rWs!524pd (2)~rW2rWs!, ~46!

whereH0
(1) is the zeroth order Hankel function of the fir

kind. In the cylindrical coordinates, the solution is

G~rW2rWs!5 ipH0
(1)~kurW2rWsu!. ~47!

In this section, ‘‘i ’’ stands forA21.
03662
e
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With N cylinder steps located atrW i ( i 51,2, . . . ,N), the
scattered wave from thej th step can be written as

hs~rW,rW j !5 (
n52`

`

ipAn
j Hn

(1)~kurW2rW j u!einfrW2rW j, ~48!

whereHn
(1) is thenth order Hankel function of the first kind

An
i is the coefficient to be determined, andf rW2rW j

is the azi-

muthal angle of the vectorrW2rW i relative to the positivex
axis.

The total wave incident around thei th scattererh in
i (rW) is

a superposition of the direct contribution from the sour
h0(rW)5G(rW2rWs) and the scattered waves from all oth
scatterers,

h in
i ~rW !5h0~rW !1 (

j 51,j Þ i

N

hs~rW,rW j !. ~49!

In order to separate the governing equations into modes
can express the total incident wave in term of the mo
aboutrW i ,

h in
i ~rW !5 (

n52`

`

Bn
i Jn~kurW2rW i u!einfrW2rW i. ~50!

The expansion is in terms of Bessel’s functions of the fi
kind Jn to ensure thath in

i (rW) does not diverge asrW→rW i . The
coefficientsBn

i are related to theAn
j in Eq. ~48! through Eq.

~49!. A particularBn
i represents the strength of thenth mode

of the total incident wave on thei th scatterer with respect to
the i th scatterer’s coordinate system~i.e., aroundrW i). In or-
der to isolate this mode on the right-hand side of Eq.~49!,
and thus determine a particularBn

i in terms of the set ofAn
j ,

we need to expresshs(rW,rW j ), for eachj Þ i , in terms of the
modes with respect to thei th scatterer. In other words, w
want hs(rW,rW j ) in the form

hs~rW,rW j !5 (
n52`

`

Cn
j ,iJn~kurW2rW i u!eifrW2rW i. ~51!

This can be achieved~i.e., Cn
j ,i expressed in terms ofAn

i )
through the following addition theorem@26#:

Hn
(1)~kurW2rW j u!einfrW2rW j

5einfrW i2rW j (
l 52`

`

Hn2 l
(1) ~kurW i2rW j u!e2 i l frW i2rW jJl~kurW2rW i u!

3eil frW2rW i. ~52!

Taking Eq.~52! into Eq. ~48!, we have

hs~rW,rW j !5 (
n52`

`

ipAn
j einfrW i2rW j (

l 52`

`

Hn2 l
(1) ~kurW i2rW j u!

3e2 i l frW i2rW jJl~kurW2rW i u!eil frW2rW i. ~53!
3-5
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Comparing with Eq.~51!, we see that

Cn
j ,i5 (

l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j. ~54!

Now we can relateBn
i to Cn

j ,i ~and thus toAl
j ) through Eq.

~49!. First note that through the addition theorem the sou
wave can be written,

h0~rW !5 ipH0
(1)~kurW2rWsu!5 (

l 52`

`

Sl
iJl~kurW2rW i u!eil frW2rW i,

~55!

where

Sl
i5 ipH2 l

(1)~kurW i2rWsu!e2 i l frW i. ~56!

Matching coefficients in Eq.~49! and using Eqs.~50!, ~51!,
and ~55!, we have

Bn
i 5Sn

i 1 (
j 51,j Þ i

N

Cn
j ,i , ~57!

or, expandingCn
j ,i ,

Bn
i 5Sn

i 1 (
j 51,j Þ i

N

(
l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j.

~58!

At this stage, both theSn
i are known, but bothBn

i andAl
j are

unknown. Boundary conditions will give another equati
relating them.

The wave inside thei th scatterer can be expressed as

h int
i ~rW !5 (

n52`

`

Dn
i Jn~ki urW2rW i u!einfrW2rW i. ~59!

Taking Eqs.~48!, ~50!, and~59! into the boundary conditions
in Eqs.~44! and ~45!, we have

Bn
i Jn~kai !1 ipAn

i Hn
(1)~kai !5Dn

i Jn~kiai !, ~60!

Bn
i Jn8~kai !1 ipAn

i Hn
(1)8~kai !5

tanh~hiki !

tanh~hk!
Dn

i Jn8~kiai !, ~61!

where the prime refers to the derivative. Elimination ofDn
i

gives

Bn
i 5 ipGn

i An
i , ~62!

where

Gn
i 5

Hn
(1)~kai !Jn8~kiai !2

tanh~kh!

tanh~kihi !
Hn

(1)8~kai !Jn~kiai !

tanh~kh!

tanh~kihi !
Jn8~kai !Jn~kiai !2Jn~kai !Jn8~kiai !

.

~63!

If we define
03662
e

Tn
i 5Sn

i / ip5H2n
(1)~kurW i2rWsu!e2 infrW i ~64!

and

Gl ,n
i , j 5Hl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j, iÞ j , ~65!

then Eq.~58! becomes

Gn
i An

i 2 (
j 51,j Þ i

N

(
l 52`

`

Gl ,n
i , j Al

j5Tn
i . ~66!

If the value ofn is limited to some finite range, then this is
matrix equation for the coefficientsAn

i . Once solved, the
total wave at any point outside all cylinder steps is

h~rW !5 ipH0
(1)~kurW2rWsu!

1(
i 51

N

(
n52`

`

ipAn
i Hn

(1)~kurW2rW i u!einfrW2rW i. ~67!

We must stress that total wave expressed by Eq.~67! incor-
porate all orders of multiple scattering. We also emphas
that the above derivation is valid for any configuration of t
cylinder steps. In other words, Eq.~67! works for situations
that the steps can be placed either randomly or orderly.

For the special case of shallow water (kh!1), we need
just replaceGn

i in Eq. ~63! by

Gn
i 5

Hn
(1)~kai !Jn8~kiai !2Ah

hi

Hn
(1)8~kai !Jn~kiai !

Ah

hi

Jn8~kai !Jn~kiai !2Jn~kai !Jn8~kiai !

.

~68!

To recover the well-known case that the water wave is s
tered by cylinders standing in the water, we just need to
hi50 in the above derivations. The previous results~e.g.,
Ref. @27#! will be naturally recovered.

IV. SUMMARY

In summary, here we have presented a general theory
studying gravity waves over bottom topographies. The f
mula used previously but without derivation in Ref.@2# is
derived from first principles. The results have been exten
to the case of step-wise bottom structures. The model
sented here is simple and may facilitate the research on m
3-6
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unusual wave phenomena such as wave localization@28#,
which has been tested by a landmark experiment in an o
dimensional acoustic system@29#. As can be inferred by a
comparison between the formulas derived here and tha
acoustic waves@21,25#, water waves bear a great similari
to the acoustic waves. It has been summarized by Mayn
@30# that there is an analogy between acoustics and c
densed matters. Therefore, it can be expected that m
tu

e

t-

03662
e-

or

rd
n-
ny

wave phenomena usually occurring in condensed mat
could also be demonstrated by water waves.
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