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Water wave propagation and scattering over topographical bottoms
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Here we provide a derivation of the formula recently used for investigating Bragg resonance in waves on a
shallow fluid over a periodically drilled bottorfM. Torres et al, Phys. Rev. E63, 011204(2000]. The
equation is also compared with other existing theories. As an application, the theory is extended to the case of
water waves propagating over a column with an arbitrary array of cylindrical steps. For a regular array, the
formulation for computing band structures is also presented.
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[. INTRODUCTION by rigid cylinders standing in water. We will first give a
theory for general bottom topographies. Then we will extend
Propagation of water waves in water with topographicalthis to study the case of water wave propagation and scatter-
bottoms has been and continues to be a subject of mudRg in a column with many cylindrical steps.
research. From the practical side, it is essential for many
important ocean engineering problems such as designing un- Il. GENERAL THEORY
derwater structures to reduce the impact of water waves on

banks or floating subjects. From the research aspect, it ma . .
also hold an important value. Since water waves are a mac- phy. We set up the coordinates as follows. Letzbais be

roscopic phenomenon, they could be monitored and recorde\f]‘artlcal and directed upward. They plane rests at the water

in a laboratory scale. In this way, many significant phenom-Surface when it is calm. The depth of the bottom, which

ena of microscopic scales may be demonstrated with wat
waves. This would be particularly useful in facilitating and
understanding abstract concepts pertinent to waves. X

Indeed, recent experimefit] used water waves to illus- ©Ve' the bottom topography described ffx,y).

trate the phenomenon of Bloch wave, which has been previ- Consider a vertical column with a base differential ele-

ously studied in solid states. This experiment made it posmentdxdy at (x,y). The change rate of the volume of the

sible that the abstract concept be presented in afiolumnis

unprecedentedly clear manner. The experimental results have

also been matched by a theoretical analysis in RgfHow-

ever, we found that the theory presented in R2f.was not

derived. Rather, it was simply given by drawing an analogyBy conservation of mass, this would be equal to the net

with the case of acoustic scattering through structures. Ther\?olume flux from all the hérizontal directions. i.e

is an obvious need for a rigorous derivation of the theory. T

This is one of the purposes of the present paper, thereby

providing a support of the formulas used in RH]. 7
There have been many approaches for investigating

propagation of water waves over various bottom tOpograWhereV —(4,,4.), and “L” denotes the horizontal direc-

phies. A great amount of papers and monographs has been Tﬁ' X7yl the first equation

published(e.g., Refs[3-14]). A comprehensive reference on 1ons. This gives us q

the topic can be found in two excellent textbo¢ks,16. In P

this paper, we would like to derive from first principles a —7

simple but coherent formulation for the problem. It will be at

shown that this formula s e>.<actly thg same as that used irf‘he second equation is obtained from Newton’s second law.
Rgf. 2] to explain the expenmentgl findings in ReL]. It From the Euler equation for incompressible ideal flows,
will also be shown that this approximate approach compares

favorably with existing approximations when applied to the L R 1 .
cases considered previously. The advantage of the present dw+(v-V)v=—-Vp—pgz
approach is obvious: it is simple, accommodating, system- P

atic, and can be easily numerically programmed. In particu
lar, we explicitly show that it, respectively, recovers three
previous results for shallow water, deep water, and scattering

Consider a water column with an arbitrary bottom topog-

escribes the bottom topography, is denotechpy,y), and
the vertical displacement of the water surfacenis,y,t).
Now we derive the governing equations for the water waves

(. Hxdy

(x,y,t)dxdy=—V, - fﬂ dzv | (x,y,zt) |dxdy,
—h

no
(x,y,t)=-V, - f_hdzh(x,y,z,t). (1)

which is valid atz=0, with g being the gravity acceleration,

p=pd(n—2), 2

*Electronic address: zhen@phy.ncu.edu.tw we obtain
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J . - - - 1% - -
LY, 00 +[(v-V)vl, 2=~V 7. () w2<1>(r,0)+95<1>(r.0)=0 [r=(xy)]. (10
Note that when the liquid surface tension is included, thelhe first approximation is made at the botton+(—h). The
following term should be added to E€R), boundary condition at the bottom reads
2 J N J - -
aVim, (4) SO, —h)=— O(F,~h)+V, -V, &(F,~h)=0. (11
in which o is the surface tension coefficient. In this paper, .
for simplicity we ignore this effect. We approximate that is in thez direction by neglecting the
Another equation is from the boundary condition mt Second term in the above equation. This is valid as long as
=h, which states V, h<kh. Thus the boundary condition gives
> A J -
U-N|z= hixy =0, (5 @, ~h)=0. (12)

wheren is a normal to the bottom. For an incompressiblene that this condition is exact in the case of step-wise

fluid, we also have the following Laplace equation: topographical bottoms, to be discussed later. Equatiéns
(10), and(12) lead to the solution fod,

D (X,Y,2) = ¢(X,y)costik(z+h)]

V.u(x,y,zt)=0, (6)

in the water column. Equationd), (3), (5), and(6) are the
four fundamental equations for water waves.

+; bn(x,y)codky(z+h)], (13

A. Linearization .
. ] . wherek satisfies
For small amplitude waves, i.e<<h, we can ignore the

nonlinear terms in Eq$1) and(3). Such a linearization leads w?=gk(x,y)tanf k(x,y)h(x,y)], (14
to the following two equations:
andk,, satisfies

O -
f RS L Y w2=gky(xy)tar ky(6y)h(x,y) 1. (15

Here ¢ and ¢, are determined by

Jd
E 77(X7y1t) = VL :

and
; (Vi+k?)¢=0 (16)
UL (xY.00+gV, 7(x,y.t)=0. ®  and

These two equations together with E¢®.and(6) determine (V=K ¢n=0. (17

the scattering of water waves with a bottom topography. . .
9 pography Equation(17) leads to evanescent wave solutions.

_ o The second approximation is to ignore the summation
B. Propagation approximation terms in Eq.(13). Such an approximation is based upon the
Here we provide an approximate solution to E@, (8),  following consideration. The summation terms represent the
(5), and(6). The procedure is as follows. When the variation correction of evanescent waves caused by irregularities such
of the bottom topography is smaller than the wavelerigith as sudden changes of depth. As these waves are spatially
be determined self-consistentlywe can first ignore terms confined, it is reasonable to expect that such a correction will
involving V, h, and solve for the velocity field. For the in- not affect the overall wave propagation, and the general fea-
compressible fluid, the velocity field can be represented by &ires of the wave propagation. Indeed, when we apply the
scalar field, i.e., later approximate solution to the extreme case of propagation
of water waves over an infinite step, we find that our results
v(X,Y,2,t)=VD(X,y,z1). agree reasonably well with that from two other approximate
approache$6,14]. For example, the difference in the reflec-
We write all dynamical variables with a time dependencetion results is uniformly less than a few percent for a wide
e~ '“! (this time fact is dropped afterwards for convenience range of frequencies. The largest discrepancy can happen for

This procedure leads to the following equations dar the transmission results, but the difference is still less than
15% (Fig. 1). Furthermore, we find that the derived result is
V2d(x,y,z)=0 (9) in agreement with that of Kirby for the case of waves over a
flat bed with small ripple418], i.e., whenkd<1 with §
with being the magnitude of the ripples. As a matter of fact, in this

036623-2



WATER WAVE PROPAGATION AND SCATTERING OVER.. ..

2

— Transmission
1.8} - - - Reflection

1.6f
1.4f
1.2

1}
0.8},

0.6
0.41 R

Transmission & Reflection Coefficients

0.2 e

~-o
-

GO 0.5 1 1.5 2 25 3

FIG. 1. The nondimensional transmission and reflection coeffi-

cients versugB3=kh for an infinite step, obtained from E§22).

While the result for the reflection agrees very well with that in Refs.
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Equation(22) is the same as that used in REf], and is
similar to what is known as the mild-slope approximation
[15]:

1V ¢ Vy|+75=0 24

¢Vl V7|t =0 (29)
wherec is given by

1 1 2kh oe

€= 21" sinnzkn) |- @9

Equation(24) was derived by a number of authors under the
situation thatV h<<kh. In fact, under this condition it can be
shown that Eq(22) is consistent with Eq(24).

Note that when the surface tension is added, &4)
becomes

[6,14], there is some discrepancy in the transmission results within | .
the range okh between 0.4 to 1.2; the largest discrepancy of aboutVith Eq. (23) becoming

15% occurs aroun&h=0.8 for the transmission. The legends are

adopted from Ref[6].

case, it can be shown that after a mathematical manipulati
[17], EqQ.(2.1)) in Ref.[18] becomes essentially the same as

the following Eq.(21).
Under the above approximations, we have

D (X,y,2)=~ ¢(X,y)costik(z+h)] (18

and

v, (x,y,z)~coslik(z+h)]V, ¢. (19

Now taking Eqs(18) and(19) into Eqgs.(7) and(8), we get

wZ

tanh kh
H ) +E77:0.

— (20

€L

For convenience, hereafter we wrile asV when it acts on
the surface wave fieldy. That is,

tanh(kh)V w? 0 o1
V|t (2
or
1
\% EV?] +7=0, (22
wherek satisfies
w?=gk(Ntanf k(r)h(r]. (23)

(0]

tan”kh)v( 7 w2y |+ =0, (20
g
w?=| gk+ ;kg’ tanh(kh). (27)

JI]his is the final equation to account for water wave propa-
gation over topographical bottom.

C. The situation of shallow water or low frequencies

In the case of shallow water, i.&kh<<1, we obtain from
Eqg. (21),

2

V.(hV7)+ %n:o. 28

This is the fundamental equation governing the small ampli-
tude waves in shallow water, first derived by Lapd.
D. The situation of deep water or high frequencies

For the deep water casek>1, we have
(29)

and

, o
Ven+ Enzo. (30

In the deep water, the dispersion relation is not affected by
the bottom topography.

E. Scattering by infinite rigid cylinders
Equationg21) or (22) are also applicable to another class

From this equation, we can have the conditions linking do-of situation which has been widely studied in the literature.

mains with different depths as follows: botly and

That is, the scattering of water waves by infinite rigid cylin-

tanhkh)/k»=w?gk?7 are continuous across the boundary. ders situated in a uniform water column. When applying Eq.
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FIG. 2. Conceptual layougside view of the three-dimensional for
coordinates There areN cylindrical steps located in a water col- G=0
umn with depthh. The depths of the steps are denoted i e
=1,2,... N) measured from the upper surface of the water col-
umn, and the radii of the steps are denotedapyThe coordinates
are set up as shown. The steps are Iocatea affhey axis lies N tanh(k;h;)  tanhkh) R
perpendicularly to the page. G)= Kk k Fs(G) (36)
(21) or (22) to this case, we find that these two equations argqy
actually exact. In the medium, the wave equation is
G+#0.
(V+k?) =0 (32
. N ) ) Herek; andk are determined by
with the boundary condition at thigh cylinder,
w?=gktanh(k h;) =gktanh(kh), (37

ﬁi'Vﬂh:O, (32) . - .
andfg is the filling factor given by[24]
obtained as we set the depths of the cylinders equal rero; 2
. : e a ,
is a normal to the interface. In fact, in this case, the problem - _) , square lattice
becomes equivalent to that of acoustic scattering by rigid d
cylinders, and all the previous acoustic results will follow fs= 20 al2
[19-22, such as the interesting phenomenon of deaf bands. ﬁ

andF; is the structure factor

g hexagonal lattice,

IIl. WATER WAVES IN A WATER COLUMN
WITH CYLINDRICAL STEPS

The problem we are now going to consider is illustrated .. .. Ji(Gla)
by Fig. 2. We consider a water column with a uniform depth |Gla
h. There areN cylindrical steps(or holes wherh;>h) lo-
cated in the water. The depths of the steps are measured from Substituting Eqs(33) and(34) into Eq. (21), we get
the water surface and are denotedihyand the radii are; .
In the realm of the linear wave theory, we study the water g N
wave propagation and scattering by these steps. 2 Qs 6/(K,w)C(G'K)=0 (38)

A. Band structure calculation with

When all the steps are with the sahe=h,="--.=hy . TN w?

and the radius, and are located periodically on the bottom Qs.6(K,0)=[(G+K)-(G'+K)JA(G—-G') - Eaé,é' -

then we can use Bloch’s theorem to study the water wave

propagation. Assume the steps are arranged either in t

square or hexagonal lattices, with lattice consthriiere we

use the standard plane-wave approg2®,24. By Bloch's

theorem, we can express the fiejdin the following form: N, . ®?

def(G+K)-(G'+K)JA(G—-G')— 55@,@ é.a =0.
n(xy)=e*XX C(G,K)ee, (33 (39)
G

|~Ifinally, the dispersion relation connectifgand w is deter-
mined by the secular equation

For the shallow water, we have takh(~kh, and thus
wherer =(x,y), G is the vector in the reciprocal lattice, and tanhkh)/k~=h, then by

K is the Bloch vector. o
In the present setup, the bottom topograph is periodic, so h(x,y)ZZ A(G)ec, (40)
we have the following expansion: G
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with

(h;—h)fs+h  for G=0,

A(G)= . a
(h;—h)F4(G) for G+#0.

(41)

B. Multiple scattering theory

The water wave propagation in the water column withAin is the coefficient to be determined, ag_

cylindrical steps can also be investigated by the multlplinuthal angle of the vector— Fi relative to the positivex

scattering theory. Without requiring that all the steps are th

same, we can develop a general formulism, following the

steps of Twersky25].
In the water column, the wave equation reads

(V2+k?) 5=0, (42)
with k being given by
w?=gktanh(kh).
Within the range of théth step, the wave equation is
(V2+k?)7=0 (43)
with
w?=gktanhkh).

At the boundary of the step, the boundary conditions are

tanh(k;h;) . tanhkh) .
#n . 7 :#n . V n , (44)
i a0, Flohy
derived from the conservation of mass, and
7 |39( = 77|¢mi*- (45

Here 0Q); denotes the boundary; and — denote the outer

and inner sides of the step, respectively, arid the outward
normal at the boundary.
Equations(42) and (43) with the boundary conditions in

PHYSICAL REVIEW 7, 036623 (2003

With N cylinder steps located eﬁ; (i=1,2,...N), the
scattered wave from thgh step can be written as

nS(F,Fj):nZ_ imAIHD(K|r —r)e"ér-r,  (48)

whereHV is thenth order Hankel function of the first kind.
7 is the azi-

The total wave incident around thith scatterer;! (r) is
a superposition of the direct contribution from the source

7o(r)=G(r—rg) and the scattered waves from all other
scatterers,

N
PN =n0(N+ X 7s(r,r)).
]=1,]#I

(49

In order to separate the governing equations into modes, we
can express the total incident wave in term of the modes

aboutr,; ,

(D= 2 Bpn(Kr—rihe-r. (50
The expansion is in terms of Bessel’s functions of the first
kind J,, to ensure thatr;}n(F) does not diverge a§—>ﬂ . The
coefﬁcientsBin are related to th@\L in Eq. (48) through Eq.
(49. A particularBin represents the strength of théh mode

of the total incident wave on thigh scatterer with respect to
theith scatterer's coordinate systdiire., aroundr;). In or-

der to isolate this mode on the right-hand side of E®),
and thus determine a particulBl, in terms of the set oAl,,

we need to expresss(F, Fj), for eachj#i, in terms of the
modes with respect to thieh scatterer. In other words, we
want nS(F, Fj) in the form

[’

7s(Fr)= 2 ChlIn(Kr—ri))e'¥ .
n=—w=x

Egs. (44) and (45) completely determine the shallow water (51

wave scattering by an ensemble of cylindrical steps located

vertically in the uniform water column. By inspecting, We This can be achieved.e., Cl' expressed in terms o)
see that this set of equations is essentially the same as t ough the following additic?n theorefi26]: "
two-dimensional acoustic scattering by an array of paralle
cylinders[21,25. We follow Ref.[21] to study the scattering
of shallow water waves in the present system.

Consider a line source IocatedF@t Without the cylinder
steps, the wave is governed by

HO (K —r;))enrr,

:ein¢;i_;jl_2 HD (K —rje " #i-r3)(kr —ri)

(V24+KA)G(r—rg9=—4msd(r—ry), (46) xelldrr, (52
whereH(" is the zeroth order Hankel function of the first Taking Eq.(52) into Eq.(48), we have
kind. In the cylindrical coordinates, the solution is " "
G(F =) =imHOKIF—F4). @ mOT= 2 imAten X H (K
In this section, 1” stands for—1. x e Mor-r3,(K|r —r;|)el #r-r. (53
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Comparing with Eq(51), we see that TL:Sin/i - H(_1r)1(k|r*i_ Fsl)e—inqsr'i (64)

> imAHD (Kr—r)el "M% (54

chi=
"o and

Now we can relatd], to C)' (and thus toAl) through Eq.
(49). First note t_hat through the addition theorem the source GHF Hl({)n(km_F].|)ei(|*n)¢r}r‘j, 3 (65)
wave can be written,

2o =i THPWT 1) = 3 Sy(klr—rihelerr,  then Ea.(8 becomes
|=—o

(59

N o0
where l“inAin—j:lEj;&i l;w GijLAf?Tin. (66)
S=imHY(K|r,—rg)e . (56)
Matching coefficients in Eq49) and using Eqgs(50), (51),  !f the value ofn is limited to some finite range, then this is a
and (55), we have matrix equation for the coefficientd,,. Once solved, the
" total wave at any point outside all cylinder steps is
BL=S,+ > Ci, (57)
o n(r)=iwHE(KIr—ry)
or, expandingCl', N
N - +> > inAHOKr—r e, (67)
i i ; - - ; .- =1 n=-x
Blr‘lzSlr‘l_Fj:lEj;&i I:Z iwA{Hff)n(k|ri—rj|)e'('7”)‘/"ﬁ'j.
(58)

We must stress that total wave expressed by(Eg). incor-

At this stage, both th&! are known, but bottB andA] are ~ Porate all orders of multiple scattering. We also emphasize
unknown. Boundary conditions will give another equationthat the above derivation is valid for any configuration of the
relating them. cylinder steps. In other words, E@7) works for situations

The wave inside théth scatterer can be expressed as that the steps can be placed either randomly or orderly.
For the special case of shallow waté&h&1), we need

L o just replacel™ in Eq. (63) by
”immil D} Jn(kilr —ri|)enei-r. (59

Taking Eqgs.(48), (50), and(59) into the boundary conditions , h ,
in Es.(44) and (45) we have ’ HRP (ke 3p(kiay) — \/:.H(nl) (k&) In(kiay)

. . . = :

Brdn(kay) +imAH{ (kay) =D} Jn(kiay), (60) " h

—Jn(kay)dn(kiay) —In(kay)In(kiay)

.- Ly tanf(hik) ; hi

Bndn(kay) +imAHy (kai):tam.(—hk)Dan(kiai)' (61 (68)

where the prime refers to the derivative. Elimination@f 14 recover the well-known case that the water wave is scat-
gives tered by cylinders standing in the water, we just need to set
h;=0 in the above derivations. The previous resu#g.,

I H I |
Ba=ialnAn, (62 Ref.[27]) will be naturally recovered.
where
tanh(kh) IV. SUMMARY
HY(kay) 3y (kiay) — HE (ka)In(kiay)
= tanh(k;h;) In summary, here we have presented a general theory for
n tanh(kh) ) ' studying gravity waves over bottom topographies. The for-
tam(kihi)‘]n(kai)‘]n(kiai)_Jn(kai)Jn(kiai) mula used previously but without derivation in RER] is

(63 derived from first principles. The results have been extended
to the case of step-wise bottom structures. The model pre-
If we define sented here is simple and may facilitate the research on many
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unusual wave phenomena such as wave localizdt@),  wave phenomena usually occurring in condensed matters
which has been tested by a landmark experiment in an oneould also be demonstrated by water waves.

dimensional acoustic systef@9]. As can be inferred by a
comparison between the formulas derived here and that for
acoustic wave$21,25, water waves bear a great similarity  Discussion with H.-P. Fang and X.-H. Hu at Fudan Uni-
to the acoustic waves. It has been summarized by Maynargersity are appreciated. The comments from X.-H. Hu are
[30] that there is an analogy between acoustics and coracknowledged. This work received support from the National
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